First-Order Perturbation Theory for Eigenvalues and Eigenvectors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second Order Perturbation Theory for Embedded Eigenvalues

We study second order perturbation theory for embedded eigenvalues of an abstract class of self-adjoint operators. Using an extension of the Mourre theory, under assumptions on the regularity of bound states with respect to a conjugate operator, we prove upper semicontinuity of the point spectrum and establish the Fermi Golden Rule criterion. Our results apply to massless Pauli-Fierz Hamiltonia...

متن کامل

Perturbation Expansions for Eigenvalues and Eigenvectors for a Rectangular Membrane Subject to a Restorative Force

Series expansions are obtained for a rich subset of eigenvalues and eigenfunctions of an operator that arises in the study of rectangular membranes: the operator is the 2-D Laplacian with restorative force term and Dirichlet boundary conditions. Expansions are extracted by considering the restorative force term as a linear perturbation of the Laplacian; errors of truncation for these expansions...

متن کامل

4: Eigenvalues, Eigenvectors, Diagonalization

Lemma 1.1. Let V be a finite-dimensional vector space over a field F. Let β, β′ be two bases for V . Let T : V → V be a linear transformation. Define Q := [IV ] ′ β . Then [T ] β β and [T ] ′ β′ satisfy the following relation [T ] ′ β′ = Q[T ] β βQ −1. Theorem 1.2. Let A be an n× n matrix. Then A is invertible if and only if det(A) 6= 0. Exercise 1.3. Let A be an n×n matrix with entries Aij, i,...

متن کامل

Lecture 8 : Eigenvalues and Eigenvectors

Hermitian Matrices It is simpler to begin with matrices with complex numbers. Let x = a + ib, where a, b are real numbers, and i = √ −1. Then, x∗ = a− ib is the complex conjugate of x. In the discussion below, all matrices and numbers are complex-valued unless stated otherwise. Let M be an n× n square matrix with complex entries. Then, λ is an eigenvalue of M if there is a non-zero vector ~v su...

متن کامل

Notes on Eigenvalues and Eigenvectors

Exercise 4. Let λ be an eigenvalue of A and let Eλ(A) = {x ∈ C|Ax = λx} denote the set of all eigenvectors of A associated with λ (including the zero vector, which is not really considered an eigenvector). Show that this set is a (nontrivial) subspace of C. Definition 5. Given A ∈ Cm×m, the function pm(λ) = det(λI − A) is a polynomial of degree at most m. This polynomial is called the character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Review

سال: 2020

ISSN: 0036-1445,1095-7200

DOI: 10.1137/19m124784x